

Instrument Accommodations

Actions:

- Review instrument/technology development inputs in Reference Mission Description
- Work out high level instrument schedule
 - Identify critical paths/milestones
 - Identify resources/funding profile to support critical paths
- Assign representative from technology development team to Radiation Forum

Instrument Accommodations

CCD/Gratings

- Mass
 - CCD: 20 kg
 - Gratings: 73.5 kg
- Power for CCD:13.8 watts
- Data Rate: 10.5 kbps (daily average); 300kbps (peak)
- Special Accommodation Concerns
 - Magnetic Cleanliness
 - EMI/EMC
 - Radiation
 - Micro-phonics/Vibration
 - Contamination
- Corrected illustration for gratings will be in next draft

Instrument Accommodations

X-ray Calorimeter

- Mass
 - Calorimeter assembly with ADR, electronics: 33.0 kg
- Data Rate: 30 kbps (average); 1051 kbps (peak)
- Special Accommodation Concerns
 - Magnetic Cleanliness
 - EMI/EMC
 - Radiation
 - Micro-phonics/Vibration
 - Contamination
- Update to accommodations table and semi-conductor calorimeter description will be in next draft

Instrument Description

Hard X-ray Telescope

- Mass
 - Optics: 63 kg/per HXT assembly (3 per satellite)
 - Detector:11kg/per HXT assembly (3 per satellite)
 - Weight per satellite: 222 kg
 - NRA weight (adjusted for 4 satellites): 195 kg
- Data Rate: 3 kbps (average); 14 kbps (peak)
- Special Accommodation Concerns
 - Magnetic Cleanliness
 - FMI/FMC
 - Radiation
 - Micro-phonics/Vibration
 - Contamination

Strategy for a Radiation Hard Mission

Develop risk management approach early in mission

- Assess radiation environment
- Identify device and system vulnerabilities
- Make accommodations to design and operational approach to minimize risk

Near-term strategy

- Set up Radiation Forum: information network on radiation
 - Project Chair: Robin Mauk
 - Representative from each instrument/technology development team
 - Contacts from Chandra and relevant programs
 - Web site with information on radiation environment, system and device susceptibilities, links to useful radiation web-sites

Radiation Environment for Constellation-X

- Science Mission at L2
- Transfer orbit include 3-5 phasing loops through Van Allen Belts (30 to 60 days)
- Models of environment are improving
 - NGST models are updated from those used for MAP
- Assume radiation effect of charged particles (protons and electrons) are omni-directional and isotropic

Radiation Dose Per Year krads(Si)

Shielding	
1 gm Al/cm ²	5 gm Al/cm ²
4.11	0.67
2.75	0.4
3.76	0.63
2.3	0.7
	1 gm Al/cm ² 4.11 2.75 3.76

Long Term Radiation Strategy

Radiation engineer for Constellation-X

- Define and evaluate hazards
- Define requirements
- Evaluate devise usage
- Team with other designers to ensure radiation hardness

Responsible person for radiation design concerns for each instrument

- Define and evaluate radiation sensitivities of instrument systems and components
- Keep an up-to-date parts list with information on radiation harness and parts processing

Regular Radiation Reliability Reviews

Review panel made of radiation design experts, project and instrument representatives